
Glossarylink
Contents

• ahead-of-time (AOT) compilation
• Angular element
• annotation
• app-shell
• Architect
• attribute directives
• binding
• bootstrap
• builder
• case types
• class decorator
• class field decorator
• collection
• command-line interface (CLI)
• component
• configuration
• custom element
• data binding
• declarable
• decorator | decoration
• dependency injection (DI)
• DI token
• directive
• domain-specific language (DSL)
• dynamic component loading
• eager loading
• ECMAScript
• element
• entry point
• form control
• form model
• form validation
• immutability
• injectable
• injector
• input
• interpolation
• JavaScript
• just-in-time (JIT) compilation
• lazy loading
• library

http://guide/glossary#glossary
http://guide/glossary#library
http://guide/glossary#lazy-loading
http://guide/glossary#just-in-time-jit-compilation
http://guide/glossary#javascript
http://guide/glossary#interpolation
http://guide/glossary#input
http://guide/glossary#injector
http://guide/glossary#injectable
http://guide/glossary#immutability
http://guide/glossary#form-validation
http://guide/glossary#form-model
http://guide/glossary#form-control
http://guide/glossary#entry-point
http://guide/glossary#element
http://guide/glossary#ecmascript
http://guide/glossary#eager-loading
http://guide/glossary#dynamic-component-loading
http://guide/glossary#domain-specific-language-dsl
http://guide/glossary#directive
http://guide/glossary#di-token
http://guide/glossary#dependency-injection-di
http://guide/glossary#decorator--decoration
http://guide/glossary#declarable
http://guide/glossary#data-binding
http://guide/glossary#custom-element
http://guide/glossary#configuration
http://guide/glossary#component
http://guide/glossary#command-line-interface-cli
http://guide/glossary#collection
http://guide/glossary#class-field-decorator
http://guide/glossary#class-decorator
http://guide/glossary#case-types
http://guide/glossary#builder
http://guide/glossary#bootstrap
http://guide/glossary#binding
http://guide/glossary#attribute-directives
http://guide/glossary#architect
http://guide/glossary#app-shell
http://guide/glossary#annotation
http://guide/glossary#angular-element
http://guide/glossary#ahead-of-time-aot-compilation

• lifecycle hook
• module
• NgModule
• npm package
• observable
• observer
• output
• pipe
• platform
• polyfill
• project
• provider
• reactive forms
• router
• router outlet
• routing component
• rule
• schematic
• Schematics CLI
• scoped package
• server-side rendering
• service
• structural directives
• subscriber
• target
• template
• template-driven forms
• template expression
• token
• transpile
• tree
• TypeScript
• Universal
• view
• view hierarchy
• web component
• workspace
• workspace configuration
• zone

Angular has its own vocabulary. Most Angular terms are common English words or computing terms
that have a specific meaning within the Angular system.

This glossary lists the most prominent terms and a few less familiar ones with unusual or unexpected
definitions.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

http://guide/glossary#Z
http://guide/glossary#Y
http://guide/glossary#X
http://guide/glossary#W
http://guide/glossary#V
http://guide/glossary#U
http://guide/glossary#T
http://guide/glossary#S
http://guide/glossary#R
http://guide/glossary#Q
http://guide/glossary#P
http://guide/glossary#O
http://guide/glossary#N
http://guide/glossary#M
http://guide/glossary#L
http://guide/glossary#K
http://guide/glossary#J
http://guide/glossary#I
http://guide/glossary#H
http://guide/glossary#G
http://guide/glossary#F
http://guide/glossary#E
http://guide/glossary#D
http://guide/glossary#C
http://guide/glossary#B
http://guide/glossary#A
http://guide/glossary#zone
http://guide/glossary#workspace-configuration
http://guide/glossary#workspace
http://guide/glossary#web-component
http://guide/glossary#view-hierarchy
http://guide/glossary#view
http://guide/glossary#universal
http://guide/glossary#typescript
http://guide/glossary#tree
http://guide/glossary#transpile
http://guide/glossary#token
http://guide/glossary#template-expression
http://guide/glossary#template-driven-forms
http://guide/glossary#template
http://guide/glossary#target
http://guide/glossary#subscriber
http://guide/glossary#structural-directives
http://guide/glossary#service
http://guide/glossary#server-side-rendering
http://guide/glossary#scoped-package
http://guide/glossary#schematics-cli
http://guide/glossary#schematic
http://guide/glossary#rule
http://guide/glossary#routing-component
http://guide/glossary#router-outlet
http://guide/glossary#router
http://guide/glossary#reactive-forms
http://guide/glossary#provider
http://guide/glossary#project
http://guide/glossary#polyfill
http://guide/glossary#platform
http://guide/glossary#pipe
http://guide/glossary#output
http://guide/glossary#observer
http://guide/glossary#observable
http://guide/glossary#npm-package
http://guide/glossary#ngmodule
http://guide/glossary#module
http://guide/glossary#lifecycle-hook

ahead-of-time (AOT) compilationlink
The Angular ahead-of-time (AOT) compiler converts Angular HTML and TypeScript code into
efficient JavaScript code during the build phase, before the browser downloads and runs that code. This
is the best compilation mode for production environments, with decreased load time and increased
performance compared to just-in-time (JIT) compilation.

By compiling your application using the ngc command-line tool, you can bootstrap directly to a
module factory, so you don't need to include the Angular compiler in your JavaScript bundle.

Angular elementlink
An Angular component packaged as a custom element.

Learn more in Angular Elements Overview.

annotationlink
A structure that provides metadata for a class. See decorator.

app-shelllink
App shell is a way to render a portion of your application via a route at build time. This gives users a
meaningful first paint of your application that appears quickly because the browser can render static
HTML and CSS without the need to initialize JavaScript.

Learn more in The App Shell Model.

You can use the Angular CLI to generate an app shell. This can improve the user experience by quickly
launching a static rendered page (a skeleton common to all pages) while the browser downloads the full
client version and switches to it automatically after the code loads.

See also Service Worker and PWA.

Architectlink
The tool that the CLI uses to perform complex tasks such as compilation and test running, according to
a provided configuration. Architect is a shell that runs a builder (defined in an npm package) with a
given target configuration.

In the workspace configuration file, an "architect" section provides configuration options for Architect
builders.

For example, a built-in builder for linting is defined in the package @angular-
devkit/build_angular:tslint, which uses the TSLint tool to perform linting, with a
configuration specified in a tslint.json file.

Use the CLI command ng run to invoke a builder by specifying a target configuration associated
with that builder. Integrators can add builders to enable tools and workflows to run through the Angular
CLI. For example, a custom builder can replace the third-party tools used by the built-in
implementations for CLI commands such as ng build or ng test.

http://guide/glossary#target
http://cli/run
https://palantir.github.io/tslint/
http://guide/workspace-config#project-tool-configuration-options
http://guide/glossary#target
http://guide/glossary#npm-package
http://guide/glossary#builder
http://guide/glossary#architect
http://guide/service-worker-intro
http://cli/generate#appshell
https://developers.google.com/web/fundamentals/architecture/app-shell
http://guide/glossary#app-shell
http://guide/glossary#decorator
http://guide/glossary#annotation
http://guide/elements
http://guide/glossary#custom-element
http://guide/glossary#component
http://guide/glossary#angular-element
http://guide/glossary#jit
http://guide/glossary#ahead-of-time-aot-compilation

attribute directiveslink
A category of directive that can listen to and modify the behavior of other HTML elements, attributes,
properties, and components. They are usually represented as HTML attributes, hence the name.

Learn more in Attribute Directives.

bindinglink
Generally, the practice of setting a variable or property to a data value. Within Angular, typically refers
to data binding, which coordinates DOM object properties with data object properties.

Sometimes refers to a dependency-injection binding between a token and a dependency provider.

bootstraplink
A way to initialize and launch an app or system.

In Angular, an app's root NgModule (AppModule) has a bootstrap property that identifies the
app's top-level components. During the bootstrap process, Angular creates and inserts these
components into the index.html host web page. You can bootstrap multiple apps in the same
index.html. Each app contains its own components.

Learn more in Bootstrapping.

builderlink
A function that uses the Architect API to perform a complex process such as "build" or "test". The
builder code is defined in an npm package.

For example, BrowserBuilder runs a webpack build for a browser target and KarmaBuilder starts the
Karma server and runs a webpack build for unit tests.

The CLI command ng run invokes a builder with a specific target configuration. The workspace
configuration file, angular.json, contains default configurations for built-in builders.

case typeslink
Angular uses capitalization conventions to distinguish the names of various types, as described in the
naming guidelines section of the Style Guide. Here's a summary of the case types:

• camelCase : Symbols, properties, methods, pipe names, non-component directive selectors,
constants. Standard or lower camel case uses lowercase on the first letter of the item. For
example, "selectedHero".

• UpperCamelCase (or PascalCase): Class names, including classes that define components,
interfaces, NgModules, directives, and pipes, Upper camel case uses uppercase on the first letter
of the item. For example, "HeroListComponent".

• dash-case (or "kebab-case"): Descriptive part of file names, component selectors. For example,
"app-hero-list".

• underscore_case (or "snake_case"): Not typically used in Angular. Snake case uses words

http://guide/styleguide#02-01
http://guide/glossary#case-types
http://guide/workspace-config
http://guide/workspace-config
http://guide/glossary#target
http://cli/run
https://github.com/angular/angular-cli/tree/master/packages/angular_devkit/build_angular/src/karma
https://webpack.js.org/
https://github.com/angular/angular-cli/tree/master/packages/angular_devkit/build_angular/src/browser
http://guide/glossary#npm-package
http://guide/glossary#architect
http://guide/glossary#builder
http://guide/bootstrapping
http://guide/glossary#component
http://guide/glossary#bootstrap
http://guide/glossary#provider
http://guide/glossary#token
http://guide/glossary#dependency-injection
http://guide/glossary#data-binding
http://guide/glossary#binding
http://guide/attribute-directives
http://guide/glossary#directive
http://guide/glossary#attribute-directives

connected with underscores. For example, "convert_link_mode".

• UPPER_UNDERSCORE_CASE (or UPPER_SNAKE_CASE, or
SCREAMING_SNAKE_CASE): Traditional for constants (acceptable, but prefer camelCase).
Upper snake case uses words in all capital letters connected with underscores. For example,
"FIX_ME".

class decoratorlink
A decorator that appears immediately before a class definition, which declares the class to be of the
given type, and provides metadata suitable to the type.

The following decorators can declare Angular class types:

• @Component()
• @Directive()
• @Pipe()
• @Injectable()
• @NgModule()

class field decoratorlink
A decorator statement immediately before a field in a class definition that declares the type of that field.
Some examples are @Input and @Output.

collectionlink
In Angular, a set of related schematics collected in an npm package.

command-line interface (CLI)link
The Angular CLI is a command-line tool for managing the Angular development cycle. Use it to create
the initial filesystem scaffolding for a workspace or project, and to run schematics that add and modify
code for initial generic versions of various elements. The CLI supports all stages of the development
cycle, including building, testing, bundling, and deployment.

• To begin using the CLI for a new project, see Local Environment Setup.
• To learn more about the full capabilities of the CLI, see the CLI command reference.

See also Schematics CLI.

componentlink
A class with the @Component() decorator that associates it with a companion template. Together, the
component and template define a view. A component is a special type of directive. The
@Component() decorator extends the @Directive() decorator with template-oriented features.

An Angular component class is responsible for exposing data and handling most of the view's display
and user-interaction logic through data binding.

http://guide/glossary#data-binding
http://api/core/Directive
http://api/core/Component
http://guide/glossary#directive
http://guide/glossary#view
http://guide/glossary#template
http://guide/glossary#decorator
http://api/core/Component
http://guide/glossary#component
http://guide/glossary#schematics-cli
http://cli/
http://guide/setup-local
http://guide/glossary#schematic
http://guide/glossary#project
http://guide/glossary#workspace
http://cli/
http://guide/glossary#command-line-interface-cli
http://guide/glossary#npm-package
http://guide/glossary#schematic
http://guide/glossary#collection
http://api/core/Output
http://api/core/Input
http://guide/glossary#decorator
http://guide/glossary#class-field-decorator
http://api/core/NgModule
http://api/core/Injectable
http://api/core/Pipe
http://api/core/Directive
http://api/core/Component
http://guide/glossary#decorator
http://guide/glossary#class-decorator

Read more about components, templates, and views in Architecture Overview.

configurationlink
See workspace configuration

custom elementlink
A web platform feature, currently supported by most browsers and available in other browsers through
polyfills (see Browser support).

The custom element feature extends HTML by allowing you to define a tag whose content is created
and controlled by JavaScript code. A custom element (also called a web component) is recognized by a
browser when it's added to the CustomElementRegistry.

You can use the API to transform an Angular component so that it can be registered with the browser
and used in any HTML that you add directly to the DOM within an Angular app. The custom element
tag inserts the component's view, with change-detection and data-binding functionality, into content
that would otherwise be displayed without Angular processing.

See Angular element.

See also dynamic component loading.

data bindinglink
A process that allows apps to display data values to a user and respond to user actions (such as clicks,
touches, and keystrokes).

In data binding, you declare the relationship between an HTML widget and a data source and let the
framework handle the details. Data binding is an alternative to manually pushing application data
values into HTML, attaching event listeners, pulling changed values from the screen, and updating
application data values.

Read about the following forms of binding in Template Syntax:

• Interpolation
• Property binding
• Event binding
• Attribute binding
• Class binding
• Style binding
• Two-way data binding with ngModel

declarablelink
A class type that you can add to the declarations list of an NgModule. You can declare
components, directives, and pipes.

Don't declare the following:

• A class that's already declared in another NgModule

http://guide/glossary#pipe
http://guide/glossary#directive
http://guide/glossary#component
http://guide/glossary#ngmodule
http://guide/glossary#declarable
http://guide/template-syntax#ngModel
http://guide/template-syntax#style-binding
http://guide/template-syntax#class-binding
http://guide/template-syntax#attribute-binding
http://guide/template-syntax#event-binding
http://guide/template-syntax#property-binding
http://guide/template-syntax#interpolation
http://guide/template-syntax
http://guide/glossary#data-binding
http://guide/glossary#dynamic-components
http://guide/glossary#angular-element
https://developer.mozilla.org/en-US/docs/Web/API/CustomElementRegistry
http://guide/browser-support
http://guide/glossary#custom-element
http://guide/glossary#cli-config
http://guide/glossary#configuration
http://guide/architecture

• An array of directives imported from another package. For example, don't declare
FORMS_DIRECTIVES from @angular/forms

• NgModule classes
• Service classes
• Non-Angular classes and objects, such as strings, numbers, functions, entity models,

configurations, business logic, and helper classes

decorator | decorationlink
A function that modifies a class or property definition. Decorators (also called annotations) are an
experimental (stage 2) JavaScript language feature. TypeScript adds support for decorators.

Angular defines decorators that attach metadata to classes or properties so that it knows what those
classes or properties mean and how they should work.

See class decorator, class field decorator.

dependency injection (DI)link
A design pattern and mechanism for creating and delivering some parts of an application
(dependencies) to other parts of an application that require them.

In Angular, dependencies are typically services, but they also can be values, such as strings or
functions. An injector for an app (created automatically during bootstrap) instantiates dependencies
when needed, using a configured provider of the service or value.

Learn more in Dependency Injection in Angular.

DI tokenlink
A lookup token associated with a dependency provider, for use with the dependency injection system.

directivelink
A class that can modify the structure of the DOM or modify attributes in the DOM and component data
model. A directive class definition is immediately preceded by a @Directive() decorator that
supplies metadata.

A directive class is usually associated with an HTML element or attribute, and that element or attribute
is often referred to as the directive itself. When Angular finds a directive in an HTML template, it
creates the matching directive class instance and gives the instance control over that portion of the
browser DOM.

There are three categories of directive:

• Components use @Component() (an extension of @Directive()) to associate a template
with a class.

• Attribute directives modify behavior and appearance of page elements.

• Structural directives modify the structure of the DOM.

http://guide/glossary#structural-directive
http://guide/glossary#attribute-directive
http://api/core/Directive
http://api/core/Component
http://guide/glossary#component
http://guide/glossary#template
http://guide/glossary#decorator
http://api/core/Directive
http://guide/glossary#directive
http://guide/glossary#di
http://guide/glossary#provider
http://guide/glossary#di-token
http://guide/dependency-injection
http://guide/glossary#provider
http://guide/glossary#injector
http://guide/glossary#dependency-injection-di
http://guide/glossary#class-field-decorator
http://guide/glossary#class-decorator
https://github.com/wycats/javascript-decorators
http://guide/glossary#decorator--decoration

Angular supplies a number of built-in directives that begin with the ng prefix. You can also create new
directives to implement your own functionality. You associate a selector (an HTML tag such as <my-
directive>) with a custom directive, thereby extending the template syntax that you can use in your
apps.

domain-specific language (DSL)link
A special-purpose library or API; see Domain-specific language. Angular extends TypeScript with
domain-specific languages for a number of domains relevant to Angular apps, defined in NgModules
such as animations, forms, and routing and navigation.

dynamic component loadinglink
A technique for adding a component to the DOM at run time. Requires that you exclude the component
from compilation and then connect it to Angular's change-detection and event-handling framework
when you add it to the DOM.

See also custom element, which provides an easier path with the same result.

eager loadinglink
NgModules or components that are loaded on launch are called eager-loaded, to distinguish them from
those that are loaded at run time (lazy-loaded). See lazy loading.

ECMAScriptlink
The official JavaScript language specification.

Not all browsers support the latest ECMAScript standard, but you can use a transpiler (like TypeScript)
to write code using the latest features, which will then be transpiled to code that runs on versions that
are supported by browsers.

To learn more, see Browser Support.

elementlink
Angular defines an ElementRef class to wrap render-specific native UI elements. In most cases, this
allows you to use Angular templates and data binding to access DOM elements without reference to the
native element.

The documentation generally refers to elements (ElementRef instances), as distinct from DOM
elements (which can be accessed directly if necessary).

Compare to custom element.

entry pointlink
A JavaScript module that is intended to be imported by a user of an npm package. An entry-point
module typically re-exports symbols from other internal modules. A package can contain multiple entry
points. For example, the @angular/core package has two entry-point modules, which can be

http://guide/npm-packages
http://guide/glossary#module
http://guide/glossary#entry-point
http://guide/glossary#custom-element
http://api/core/ElementRef
http://api/core/ElementRef
http://guide/glossary#element
http://guide/browser-support
http://guide/glossary#typescript
http://guide/glossary#transpile
https://en.wikipedia.org/wiki/ECMAScript
http://guide/glossary#ecmascript
http://guide/glossary#lazy-load
http://guide/glossary#eager-loading
http://guide/glossary#custom-element
http://guide/glossary#dynamic-component-loading
http://guide/router
http://guide/forms
http://guide/animations
https://en.wikipedia.org/wiki/Domain-specific_language
http://guide/glossary#domain-specific-language-dsl
http://guide/template-syntax

imported using the module names @angular/core and @angular/core/testing.

form controllink
A instance of FormControl, which is a fundamental building block for Angular forms. Together with
FormGroup and FormArray, tracks the value, validation, and status of a form input element.

Read more forms in the Introduction to forms in Angular.

form modellink
The "source of truth" for the value and validation status of a form input element at a given point in
time. When using reactive forms, the form model is created explicitly in the component class. When
using template-driven forms, the form model is implicitly created by directives.

Learn more about reactive and template-driven forms in the Introduction to forms in Angular.

form validationlink
A check that runs when form values change and reports whether the given values are correct and
complete, according to the defined constraints. Reactive forms apply validator functions. Template-
driven forms use validator directives.

To learn more, see Form Validation.

immutabilitylink
The ability to alter the state of a value after its creation. Reactive forms perform immutable changes in
that each change to the data model produces a new data model rather than modifying the existing one.
Template-driven forms perform mutable changes with NgModel and two-way data binding to modify
the existing data model in place.

injectablelink
An Angular class or other definition that provides a dependency using the dependency injection
mechanism. An injectable service class must be marked by the @Injectable() decorator. Other
items, such as constant values, can also be injectable.

injectorlink
An object in the Angular dependency-injection system that can find a named dependency in its cache or
create a dependency using a configured provider. Injectors are created for NgModules automatically as
part of the bootstrap process and are inherited through the component hierarchy.

• An injector provides a singleton instance of a dependency, and can inject this same instance in
multiple components.

• A hierarchy of injectors at the NgModule and component level can provide different instances
of a dependency to their own components and child components.

http://guide/glossary#provider
http://guide/glossary#dependency-injection
http://guide/glossary#injector
http://guide/glossary#decorator
http://api/core/Injectable
http://guide/glossary#service
http://guide/glossary#di
http://guide/glossary#injectable
http://guide/glossary#data-binding
http://api/forms/NgModel
http://guide/glossary#template-driven-forms
http://guide/glossary#reactive-forms
http://guide/glossary#immutability
http://guide/form-validation
http://guide/form-validation#adding-to-template-driven-forms
http://guide/form-validation#adding-to-reactive-forms
http://guide/glossary#form-validation
http://guide/forms-overview
http://guide/glossary#template-driven-forms
http://guide/glossary#reactive-forms
http://guide/glossary#form-model
http://guide/forms-overview
http://api/forms/FormArray
http://api/forms/FormGroup
http://api/forms/FormControl
http://guide/glossary#form-control

• You can configure injectors with different providers that can provide different implementations
of the same dependency.

Learn more about the injector hierarchy in Hierarchical Dependency Injectors.

inputlink
When defining a directive, the @Input() decorator on a directive property makes that property
available as a target of a property binding. Data values flow into an input property from the data source
identified in the template expression to the right of the equal sign.

To learn more, see input and output properties.

interpolationlink
A form of property data binding in which a template expression between double-curly braces renders as
text. That text can be concatenated with neighboring text before it is assigned to an element property or
displayed between element tags, as in this example.

<label>My current hero is {{hero.name}}</label>

 content_copy

 <label>My current hero is {{hero.name}}</label>

Read more about interpolation in Template Syntax.

JavaScriptlink
See ECMAScript, TypeScript.

just-in-time (JIT) compilationlink
The Angular just-in-time (JIT) compiler converts your Angular HTML and TypeScript code into
efficient JavaScript code at run time, as part of bootstrapping.

JIT compilation is the default (as opposed to AOT compilation) when you run Angular's ng build
and ng serve CLI commands, and is a good choice during development. JIT mode is strongly
discouraged for production use because it results in large application payloads that hinder the bootstrap
performance.

Compare to ahead-of-time (AOT) compilation.

lazy loadinglink
A process that speeds up application load time by splitting the application into multiple bundles and
loading them on demand. For example, dependencies can be lazy loaded as needed—as opposed to
eager-loaded modules that are required by the root module and are thus loaded on launch.

The router makes use of lazy loading to load child views only when the parent view is activated.
Similarly, you can build custom elements that can be loaded into an Angular app when needed.

http://guide/glossary#router
http://guide/glossary#eager-loading
http://guide/glossary#lazy-loading
http://guide/glossary#aot
http://guide/glossary#just-in-time-jit-compilation
http://guide/glossary#typescript
http://guide/glossary#ecma
http://guide/glossary#javascript
http://guide/template-syntax
http://guide/template-syntax#interpolation
http://guide/glossary#template-expression
http://guide/glossary#data-binding
http://guide/glossary#interpolation
http://guide/template-syntax#inputs-outputs
http://guide/glossary#template-expression
http://guide/template-syntax#property-binding
http://api/core/Input
http://guide/glossary#directive
http://guide/glossary#input
http://guide/hierarchical-dependency-injection

librarylink
In Angular, a project that provides functionality that can be included in other Angular apps. A library
isn't a complete Angular app and can't run independently. (To add re-usable Angular functionality to
non-Angular web apps, you can use Angular custom elements.)

• Library developers can use the Angular CLI to generate scaffolding for a new library in an
existing workspace, and can publish a library as an npm package.

• Application developers can use the Angular CLI to add a published library for use with an
application in the same workspace.

See also schematic.

lifecycle hooklink
An interface that allows you to tap into the lifecycle of directives and components as they are created,
updated, and destroyed.

Each interface has a single hook method whose name is the interface name prefixed with ng. For
example, the OnInit interface has a hook method named ngOnInit.

Angular calls these hook methods in the following order:

• ngOnChanges: When an input/output binding value changes.
• ngOnInit: After the first ngOnChanges.
• ngDoCheck: Developer's custom change detection.
• ngAfterContentInit: After component content initialized.
• ngAfterContentChecked: After every check of component content.
• ngAfterViewInit: After a component's views are initialized.
• ngAfterViewChecked: After every check of a component's views.
• ngOnDestroy: Just before the directive is destroyed.

To learn more, see Lifecycle Hooks.

modulelink
In general, a module collects a block of code dedicated to a single purpose. Angular uses standard
JavaScript modules and also defines an Angular module, NgModule.

In JavaScript (ECMAScript), each file is a module and all objects defined in the file belong to that
module. Objects can exported, making them public, and public objects can be imported for use by other
modules.

Angular ships as a collection of JavaScript modules (also called libraries). Each Angular library name
begins with the @angular prefix. Install Angular libraries with the npm package manager and import
parts of them with JavaScript import declarations.

Compare to NgModule.

http://guide/glossary#ngmodule
https://docs.npmjs.com/getting-started/what-is-npm
http://api/core/NgModule
http://guide/glossary#module
http://guide/lifecycle-hooks
http://guide/glossary#output
http://guide/glossary#input
http://api/core/OnInit
http://guide/glossary#component
http://guide/glossary#directive
http://guide/glossary#lifecycle-hook
http://guide/glossary#schematic
http://guide/glossary#workspace
http://guide/glossary#cli
http://guide/glossary#workspace
http://guide/glossary#cli
http://guide/glossary#angular-element
http://guide/glossary#project
http://guide/glossary#library

NgModulelink
A class definition preceded by the @NgModule() decorator, which declares and serves as a manifest
for a block of code dedicated to an application domain, a workflow, or a closely related set of
capabilities.

Like a JavaScript module, an NgModule can export functionality for use by other NgModules and
import public functionality from other NgModules. The metadata for an NgModule class collects
components, directives, and pipes that the application uses along with the list of imports and exports.
See also declarable.

NgModules are typically named after the file in which the exported thing is defined. For example, the
Angular DatePipe class belongs to a feature module named date_pipe in the file date_pipe.ts.
You import them from an Angular scoped package such as @angular/core.

Every Angular application has a root module. By convention, the class is called AppModule and
resides in a file named app.module.ts.

To learn more, see NgModules.

npm packagelink
The npm package manager is used to distribute and load Angular modules and libraries.

Learn more about how Angular uses Npm Packages.

observablelink
A producer of multiple values, which it pushes to subscribers. Used for asynchronous event handling
throughout Angular. You execute an observable by subscribing to it with its subscribe() method,
passing callbacks for notifications of new values, errors, or completion.

Observables can deliver single or multiple values of any type to subscribers, either synchronously (as a
function delivers a value to its caller) or on a schedule. A subscriber receives notification of new values
as they are produced and notification of either normal completion or error completion.

Angular uses a third-party library called Reactive Extensions (RxJS).

To learn more, see Observables.

observerlink
An object passed to the subscribe() method for an observable. The object defines the callbacks for
the subscriber.

outputlink
When defining a directive, the @Output{} decorator on a directive property makes that property
available as a target of event binding. Events stream out of this property to the receiver identified in the
template expression to the right of the equal sign.

To learn more, see Input and Output Properties.

http://guide/template-syntax#inputs-outputs
http://guide/glossary#template-expression
http://guide/template-syntax#event-binding
http://api/core/Output
http://guide/glossary#directive
http://guide/glossary#output
http://guide/glossary#subscriber
http://guide/glossary#observable
http://guide/glossary#observer
http://guide/observables
http://reactivex.io/rxjs/
http://guide/glossary#subscriber
http://guide/glossary#observable
http://guide/npm-packages
https://docs.npmjs.com/getting-started/what-is-npm
http://guide/glossary#npm-package
http://guide/ngmodules
http://guide/glossary#scoped-package
http://api/common/DatePipe
http://guide/glossary#declarable
http://guide/glossary#module
http://guide/glossary#decorator
http://api/core/NgModule
http://guide/glossary#ngmodule

pipelink
A class which is preceded by the @Pipe{} decorator and which defines a function that transforms
input values to output values for display in a view. Angular defines various pipes, and you can define
new pipes.

To learn more, see Pipes.

platformlink
In Angular terminology, a platform is the context in which an Angular application runs. The most
common platform for Angular applications is a web browser, but it can also be an operating system for
a mobile device, or a web server.

Support for the various Angular run-time platforms is provided by the @angular/platform-*
packages. These packages allow applications that make use of @angular/core and
@angular/common to execute in different environments by providing implementation for gathering
user input and rendering UIs for the given platform. Isolating platform-specific functionality allows the
developer to make platform-independent use of the rest of the framework.

• When running in a web browser, BrowserModule is imported from the platform-
browser package, and supports services that simplify security and event processing, and
allows applications to access browser-specific features, such as interpreting keyboard input and
controlling the title of the document being displayed. All applications running in the browser
use the same platform service.

• When server-side rendering (SSR) is used, the platform-server package provides web
server implementations of the DOM, XMLHttpRequest, and other low-level features that don't
rely on a browser.

polyfilllink
An npm package that plugs gaps in a browser's JavaScript implementation. See Browser Support for
polyfills that support particular functionality for particular platforms.

projectlink
In the Angular CLI, a standalone application or library that can be created or modified by a CLI
command.

A project, as generated by the ng new, contains the set of source files, resources, and configuration
files that you need to develop and test the application using the CLI. Projects can also be created with
the ng generate application and ng generate library commands.

For more information, see Project File Structure.

The angular.json file configures all projects in a workspace.

providerlink
An object that implements one of the Provider interfaces. A provider object defines how to obtain an

http://api/core/Provider
http://guide/glossary#provider
http://guide/glossary#workspace
http://guide/workspace-config
http://guide/file-structure
http://cli/new
http://guide/glossary#library
http://guide/glossary#project
http://guide/browser-support
http://guide/npm-packages
http://guide/glossary#polyfill
http://api/platform-server
http://guide/glossary#server-side-rendering
http://api/platform-browser/BrowserModule
http://guide/glossary#platform
http://guide/pipes
http://guide/glossary#view
http://api/core/Pipe
http://guide/glossary#pipe

injectable dependency associated with a DI token. An injector uses the provider to create a new
instance of a dependency for a class that requires it.

Angular registers its own providers with every injector, for services that Angular defines. You can
register your own providers for services that your app needs.

See also service, dependency injection.

Learn more in Dependency Injection.

reactive formslink
A framework for building Angular forms through code in a component. The alternative is a template-
driven form.

When using reactive forms:

• The "source of truth", the form model, is defined in the component class.
• Validation is set up through validation functions rather than valdation directives.
• Each control is explicitly created in the component class by creating a FormControl instance

manually or with FormBuilder.
• The template input elements do not use ngModel.
• The associated Angular directives are prefixed with form, such as formControl,
formGroup, and formControlName.

The alternative is a template-driven form. For an introduction and comparison of both forms
approaches, see Introduction to Angular Forms.

routerlink
A tool that configures and implements navigation among states and views within an Angular app.

The Router module is an NgModule that provides the necessary service providers and directives for
navigating through application views. A routing component is one that imports the Router module
and whose template contains a RouterOutlet element where it can display views produced by the
router.

The router defines navigation among views on a single page, as opposed to navigation among pages. It
interprets URL-like links to determine which views to create or destroy, and which components to load
or unload. It allows you to take advantage of lazy loading in your Angular apps.

To learn more, see Routing and Navigation.

router outletlink
A directive that acts as a placeholder in a routing component's template. Angular dynamically renders
the template based on the current router state.

routing componentlink
An Angular component with a RouterOutlet directive in its template that displays views based on
router navigations.

http://api/router/RouterOutlet
http://guide/glossary#component
http://guide/glossary#routing-component
http://guide/glossary#directive
http://guide/glossary#router-outlet
http://guide/router
http://guide/glossary#lazy-load
http://api/router/RouterOutlet
http://api/router/Router
http://guide/glossary#routing-component
http://guide/glossary#ngmodule
http://api/router/Router
http://guide/glossary#view
http://guide/glossary#router
http://guide/forms-overview
http://api/forms/FormControlName
http://api/forms/NgModel
http://api/forms/FormBuilder
http://api/forms/FormControl
http://guide/glossary#template-driven-forms
http://guide/glossary#template-driven-forms
http://guide/glossary#reactive-forms
http://guide/dependency-injection
http://guide/glossary#di
http://guide/glossary#service
http://guide/glossary#injector
http://guide/glossary#token

For more information, see Routing and Navigation.

rulelink
In schematics, a function that operates on a file tree to create, delete, or modify files in a specific
manner.

schematiclink
A scaffolding library that defines how to generate or transform a programming project by creating,
modifying, refactoring, or moving files and code. A schematic defines rules that operate on a virtual file
system called a tree.

The Angular CLI uses schematics to generate and modify Angular projects and parts of projects.

• Angular provides a set of schematics for use with the CLI. See the Angular CLI command
reference. The ng add command runs schematics as part of adding a library to your project.
The ng generate command runs schematics to create apps, libraries, and Angular code
constructs.

• Library developers can create schematics that enable the Angular CLI to add and update their
published libraries, and to generate artifacts the library defines. Add these schematics to the
npm package that you use to publish and share your library.

For more information, see Schematics and Integrating Libraries with the CLI.

Schematics CLIlink
Schematics come with their own command-line tool. Using Node 6.9 or above, install the Schematics
CLI globally:

npm install -g @angular-devkit/schematics-cli

 content_copy

 npm install -g @angular-devkit/schematics-cli

This installs the schematics executable, which you can use to create a new schematics collection
with an initial named schematic. The collection folder is a workspace for schematics. You can also use
the schematics command to add a new schematic to an existing collection, or extend an existing
schematic.

scoped packagelink
A way to group related npm packages. NgModules are delivered within scoped packages whose names
begin with the Angular scope name @angular. For example, @angular/core,
@angular/common, @angular/forms, and @angular/router.

Import a scoped package in the same way that you import a normal package.

import { Component } from '@angular/core';

http://api/core/Component
http://guide/npm-packages
http://guide/glossary#scoped-package
http://guide/glossary#collection
http://guide/glossary#schematics-cli
http://guide/creating-libraries#integrating-with-the-cli
http://guide/schematics
http://guide/glossary#library
http://cli/generate
http://cli/add
http://cli/
http://cli/
http://guide/glossary#project
http://guide/glossary#cli
http://guide/glossary#file-tree
http://guide/glossary#rule
http://guide/glossary#schematic
http://guide/glossary#file-tree
http://guide/glossary#schematic
http://guide/glossary#rule
http://guide/router

architecture/src/app/app.component.ts (import)

 content_copy

 import { Component } from '@angular/core';

server-side renderinglink
A technique that generates static application pages on the server, and can generate and serve those
pages in response to requests from browsers. It can also pre-generate pages as HTML files that you
serve later.

This technique can improve performance on mobile and low-powered devices and improve the user
experience by showing a static first page quickly while the client-side app is loading. The static version
can also make your app more visible to web crawlers.

You can easily prepare an app for server-side rendering by using the CLI to run the Angular Universal
tool, using the @nguniversal/express-engine schematic.

servicelink
In Angular, a class with the @Injectable() decorator that encapsulates non-UI logic and code that can
be reused across an application. Angular distinguishes components from services to increase
modularity and reusability.

The @Injectable() metadata allows the service class to be used with the dependency injection
mechanism. The injectable class is instantiated by a provider. Injectors maintain lists of providers and
use them to provide service instances when they are required by components or other services.

To learn more, see Introduction to Services and Dependency Injection.

structural directiveslink
A category of directive that is responsible for shaping HTML layout by modifying the
DOM&mdashthat is, adding, removing, or manipulating elements and their children.

To learn more, see Structural Directives.

subscriberlink
A function that defines how to obtain or generate values or messages to be published. This function is
executed when a consumer calls the subscribe() method of an observable.

The act of subscribing to an observable triggers its execution, associates callbacks with it, and creates a
Subscription object that lets you unsubscribe.

The subscribe() method takes a JavaScript object (called an observer) with up to three callbacks,
one for each type of notification that an observable can deliver:

• The next notification sends a value such as a number, a string, or an object.
• The error notification sends a JavaScript Error or exception.

http://guide/glossary#observer
http://guide/glossary#observable
http://guide/glossary#subscriber
http://guide/structural-directives
http://guide/glossary#directive
http://guide/glossary#structural-directives
http://guide/architecture-services
http://guide/glossary#injector
http://guide/glossary#provider
http://guide/glossary#di
http://api/core/Injectable
http://guide/glossary#injectable
http://guide/glossary#service
http://guide/glossary#schematic
http://guide/glossary#universal
http://guide/glossary#cli
http://guide/glossary#server-side-rendering
http://api/core/Component

• The complete notification doesn't send a value, but the handler is called when the call
completes. Scheduled values can continue to be returned after the call completes.

targetlink
A buildable or runnable subset of a project, configured as an object in the workspace configuration file,
and executed by an Architect builder.

In the angular.json file, each project has an "architect" section that contains targets which
configure builders. Some of these targets correspond to CLI commands, such as build, serve,
test, and lint.

For example, the Architect builder invoked by the ng build command to compile a project uses a
particular build tool, and has a default configuration whose values can be overridden on the command
line. The build target also defines an alternate configuration for a "production" build, that can be
invoked with the --prod flag on the build command.

The Architect tool provides a set of builders. The ng new command provides a set of targets for the
initial application project. The ng generate application and ng generate library
commands provide a set of targets for each new project. These targets, their options and configurations,
can be customized to meet the needs of your project. For example, you may want to add a "staging" or
"testing" configuration to a project's "build" target.

You can also define a custom builder, and add a target to the project configuration that uses your
custom builder. You can then run the target using the ng run CLI command.

templatelink
Code associated with a component that defines how to render the component's view.

A template combines straight HTML with Angular data-binding syntax, directives, and template
expressions (logical constructs). The Angular elements insert or calculate values that modify the HTML
elements before the page is displayed.

A template is associated with a component class through the @Component() decorator. The HTML
can be provided inline, as the value of the template property, or in a separate HTML file linked
through the templateUrl property.

Additional templates, represented by TemplateRef objects, can define alternative or embedded
views, which can be referenced from multiple components.

template-driven formslink
A format for building Angular forms using HTML forms and input elements in the view. The
alternative format uses the reactive forms framework.

When using template-driven forms:

• The "source of truth" is the template. The validation is defined using attributes on the individual
input elements.

• Two-way binding with ngModel keeps the component model synchronized with the user's
entry into the input elements.

http://api/forms/NgModel
http://guide/glossary#data-binding
http://guide/glossary#reactive-forms
http://guide/glossary#template-driven-forms
http://api/core/TemplateRef
http://guide/glossary#decorator
http://api/core/Component
http://guide/glossary#component
http://guide/glossary#template-expression
http://guide/glossary#template-expression
http://guide/glossary#directive
http://guide/glossary#data-binding
http://guide/glossary#view
http://guide/glossary#template
http://cli/run
http://guide/glossary#project
http://cli/generate#library
http://cli/generate#application
http://cli/new
http://guide/glossary#cli
http://guide/glossary#builder
http://guide/glossary#architect
http://guide/workspace-config#project-tool-configuration-options
http://guide/glossary#project
http://guide/glossary#target

• Behind the scenes, Angular creates a new control for each input element, provided you have set
up a name attribute and two-way binding for each input.

• The associated Angular directives are prefixed with ng such as ngForm, ngModel, and
ngModelGroup.

The alternative is a reactive form. For an introduction and comparison of both forms approaches, see
Introduction to Angular Forms.

template expressionlink
A TypeScript-like syntax that Angular evaluates within a data binding.

Read about how to write template expressions in Template expressions.

tokenlink
An opaque identifier used for efficient table lookup. In Angular, a DI token is used to find providers of
dependencies in the dependency injection system.

transpilelink
The translation process that transforms one version of JavaScript to another version; for example,
down-leveling ES2015 to the older ES5 version.

treelink
In schematics, a virtual file system represented by the Tree class. Schematic rules take a tree object as
input, operate on them, and return a new tree object.

TypeScriptlink
A programming language based on JavaScript that is notable for its optional typing system. TypeScript
provides compile-time type checking and strong tooling support (such as code completion, refactoring,
inline documentation, and intelligent search). Many code editors and IDEs support TypeScript either
natively or with plug-ins.

TypeScript is the preferred language for Angular development. Read more about TypeScript at
typescriptlang.org.

Universallink
A tool for implementing server-side rendering of an Angular application. When integrated with an app,
Universal generates and serves static pages on the server in response to requests from browsers. The
initial static page serves as a fast-loading placeholder while the full application is being prepared for
normal execution in the browser.

To learn more, see Angular Universal: server-side rendering.

http://guide/universal
http://guide/glossary#server-side-rendering
http://guide/glossary#universal
http://www.typescriptlang.org/
http://guide/glossary#typescript
http://guide/glossary#rule
http://guide/glossary#schematic
http://guide/glossary#tree
http://guide/glossary#transpile
http://guide/glossary#di
http://guide/glossary#provider
http://guide/glossary#di-token
http://guide/glossary#token
http://guide/template-syntax#template-expressions
http://guide/glossary#data-binding
http://guide/glossary#template-expression
http://guide/forms-overview
http://api/forms/NgModelGroup
http://api/forms/NgModel
http://api/forms/NgForm

viewlink
The smallest grouping of display elements that can be created and destroyed together. Angular renders
a view under the control of one or more directives, especially component directives and their
companion templates.

A view is specifically represented by a ViewRef instance associated with the component. A view that
belongs to a component is called a host view. Views are typically collected into view hierarchies.

Properties of elements in a view can change dynamically, in response to user actions; the structure
(number and order) of elements in a view can't. You can change the structure of elements by inserting,
moving, or removing nested views within their view containers.

View hierarchies can be loaded and unloaded dynamically as the user navigates through the
application, typically under the control of a router.

view hierarchylink
A tree of related views that can be acted on as a unit. The root view is a component's host view. A host
view can be the root of a tree of embedded views, collected in a view container
(ViewContainerRef) attached to an anchor element in the hosting component. The view hierarchy
is a key part of Angular change detection.

The view hierarchy doesn't imply a component hierarchy. Views that are embedded in the context of a
particular hierarchy can be host views of other components. Those components can be in the same
NgModule as the hosting component, or belong to other NgModules.

web componentlink
See custom element.

workspacelink
A collection of Angular projects (that is, applications and libraries) powered by the Angular CLI that
are typically co-located in a single source-control repository (such as git).

The CLI ng new command creates a file system directory (the "workspace root"). In the workspace
root, it also creates the workspace configuration file (angular.json) and, by default, an initial
application project with the same name.

Commands that create or operate on apps and libraries (such as add and generate) must be
executed from within a workspace folder.

For more information, see Workspace Configuration.

workspace configurationlink
A file named angular.json at the root level of an Angular workspace provides workspace-wide
and project-specific configuration defaults for build and development tools that are provided by or
integrated with the Angular CLI.

For more information, see Workspace Configuration.

http://guide/workspace-config
http://guide/glossary#cli
http://guide/glossary#workspace
http://guide/glossary#workspace-configuration
http://guide/workspace-config
http://guide/glossary#configuration
http://cli/new
http://guide/glossary#cli
https://git-scm.com/
http://guide/glossary#cli
http://guide/glossary#project
http://guide/glossary#workspace
http://guide/glossary#custom-element
http://guide/glossary#web-component
http://api/core/ViewContainerRef
http://guide/glossary#view-hierarchy
http://guide/glossary#router
http://guide/glossary#view-tree
http://api/core/ViewRef
http://guide/glossary#template
http://guide/glossary#component
http://guide/glossary#directive
http://guide/glossary#view

Additional project-specific configuration files are used by tools, such as package.json for the npm
package manager, tsconfig.json for TypeScript transpilation, and tslint.json for TSLint.

For more information, see Workspace and Project File Structure.

zonelink
An execution context for a set of asynchronous tasks. Useful for debugging, profiling, and testing apps
that include asynchronous operations such as event processing, promises, and calls to remote servers.

An Angular app runs in a zone where it can respond to asynchronous events by checking for data
changes and updating the information it displays by resolving data bindings.

A zone client can take action before and after an async operation completes.

Learn more about zones in this Brian Ford video.

https://www.youtube.com/watch?v=3IqtmUscE_U
http://guide/glossary#data-binding
http://guide/glossary#zone
http://guide/file-structure
https://palantir.github.io/tslint/
http://guide/glossary#transpile
http://guide/glossary#npm-package
http://guide/glossary#npm-package

	Glossarylink
	ahead-of-time (AOT) compilationlink
	Angular elementlink
	annotationlink
	app-shelllink
	Architectlink
	attribute directiveslink
	bindinglink
	bootstraplink
	builderlink
	case typeslink
	class decoratorlink
	class field decoratorlink
	collectionlink
	command-line interface (CLI)link
	componentlink
	configurationlink
	custom elementlink
	data bindinglink
	declarablelink
	decorator | decorationlink
	dependency injection (DI)link
	DI tokenlink
	directivelink
	domain-specific language (DSL)link
	dynamic component loadinglink
	eager loadinglink
	ECMAScriptlink
	elementlink
	entry pointlink
	form controllink
	form modellink
	form validationlink
	immutabilitylink
	injectablelink
	injectorlink
	inputlink
	interpolationlink
	JavaScriptlink
	just-in-time (JIT) compilationlink
	lazy loadinglink
	librarylink
	lifecycle hooklink
	modulelink
	NgModulelink
	npm packagelink
	observablelink
	observerlink
	outputlink
	pipelink
	platformlink
	polyfilllink
	projectlink
	providerlink
	reactive formslink
	routerlink
	router outletlink
	routing componentlink
	rulelink
	schematiclink
	Schematics CLIlink
	scoped packagelink
	server-side renderinglink
	servicelink
	structural directiveslink
	subscriberlink
	targetlink
	templatelink
	template-driven formslink
	template expressionlink
	tokenlink
	transpilelink
	treelink
	TypeScriptlink
	Universallink
	viewlink
	view hierarchylink
	web componentlink
	workspacelink
	workspace configurationlink
	zonelink

